虚拟化容器,大数据,DBA,中间件,监控。

搭建Spark所遇过的坑

15 11月
作者:admin|分类:大数据

一.经验

1.Spark Streaming包含三种计算模式:nonstate .stateful .window


2.kafka可通过配置文件使用自带的zookeeper集群


3.Spark一切操作归根结底是对RDD的操作


4.部署Spark任务,不用拷贝整个架包,只需拷贝被修改的文件,然后在目标服务器上编译打包。


5.kafka的log.dirs不要设置成/tmp下的目录,貌似tmp目录有文件数和磁盘容量限制


6.ES的分片类似kafka的partition


7spark Graph根据边集合构建图,顶点集合只是指定图中哪些顶点有效


8.presto集群没必要采用on yarn模式,因为hadoop依赖HDFS,如果部分机器磁盘很小,hadoop会很尴尬,而presto是纯内存计算,不依赖磁盘,独立安装可以跨越多个集群,可以说有内存的地方就可以有presto


9.presto进程一旦启动,JVM server会一直占用内存


10.如果maven下载很慢,很可能是被天朝的GFW墙了,可以在maven安装目录的setting.conf配置文件mirrors标签下加入国内镜像抵制**党的网络封锁,例如:

<mirror>
  <id>nexus-aliyun</id>
  <mirrorOf>*</mirrorOf>
  <name>Nexus aliyun</name>
  <url>http://maven.aliyun.com/nexus/content/groups/public</url>
</mirror>

11.编译spark,hive on spark就不要加-Phive参数,若需sparkSQL支持hive语法则要加-Phive参数


12.通过hive源文件pom.xml查看适配的spark版本,只要打版本保持一致就行,例如spark1.6.0和1.6.2都能匹配


13.打开Hive命令行客户端,观察输出日志是否有打印“SLF4J: Found binding in [jar:file:/work/poa/hive-2.1.0-bin/lib/spark-assembly-1.6.2-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]”来判断hive有没有绑定spark


14.kafka的comsumer groupID对于spark direct streaming无效


15.shuffle write就是在一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子,而将每个task处理的数据按key进行分类,将相同key都写入同一个磁盘文件中,而每一个磁盘文件都只属于下游stage的一个task,在将数据写入磁盘之前,会先将数据写入内存缓存中,下一个stage的task有多少个,当前stage的每个task就要创建多少份磁盘文件。


16.单个spark任务的excutor核数不宜设置过高,否则会导致其他JOB延迟


17.数据倾斜只发生在shuffle过程,可能触发shuffle操作的算子有:distinct, groupByKey, reduceByKey, aggregateByKey, join, cogroup, repartition


18.运行时删除hadoop数据目录会导致依赖HDFS的JOB失效


19.sparkSQL UDAF中update函数的第二个参数 input: Row 对应的并非DataFrame的行,而是被inputSchema投影了的行


20.Spark的Driver只有在Action时才会收到结果


21.Spark需要全局聚合变量时应当使用累加器(Accumulator)


22.Kafka以topic与consumer group划分关系,一个topic的消息会被订阅它的消费者组全部消费,如果希望某个consumer使用topic的全部消息,可将该组只设一个消费者,每个组的消费者数目不能大于topic的partition总数,否则多出的consumer将无消可费


23.所有自定义类要实现serializable接口,否则在集群中无法生效


24.resources资源文件读取要在Spark Driver端进行,以局部变量方式传给闭包函数


25.DStream流转化只产生临时流对象,如果要继续使用,需要一个引用指向该临时流对象


26.提交到yarn cluster的作业不能直接print到控制台,要用log4j输出到日志文件中


27.HDFS文件路径写法为:hdfs://master:9000/文件路径,这里的master是namenode的hostname,9000是hdfs端口号。


28.不要随意格式化HDFS,这会带来数据版本不一致等诸多问题,格式化前要清空数据文件夹


29.搭建集群时要首先配置好主机名,并重启机器让配置的主机名生效


30.linux批量多机互信, 将pub秘钥配成一个


31小于128M的小文件都会占据一个128M的BLOCK,合并或者删除小文件节省磁盘空间


32.Non DFS Used指的是非HDFS的所有文件


33.spark两个分区方法coalesce和repartition,前者窄依赖,分区后数据不均匀,后者宽依赖,引发shuffle操作,分区后数据均匀


34.spark中数据写入ElasticSearch的操作必须在action中以RDD为单位执行


35.可以通过hive-site.xml修改spark.executor.instances, spark.executor.cores, spark.executor.memory等配置来优化hive on spark执行性能,不过最好配成动态资源分配。


</br>
</br>
</br>
</br>

二.基本功能

0.常见问题:

1如果运行程序出现错误:Exception in thread "main" java.lang.NoClassDefFoundError: org/slf4j/LoggerFactory,这是因为项目缺少slf4j-api.jarslf4j-log4j12.jar这两个jar包导致的错误。
2如果运行程序出现错误:java.lang.NoClassDefFoundError: org/apache/log4j/LogManager,这是因为项目缺少log4j.jar这个jar包
3错误:Exception in thread "main" java.lang.NoSuchMethodError: org.slf4j.MDC.getCopyOfContextMap()Ljava/util/Map,这是因为jar包版本冲突造成的。

1.配置spark-submit (CDH版本)

Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream
        at org.apache.spark.deploy.SparkSubmitArguments.handleUnknown(SparkSubmitArguments.scala:451)
        at org.apache.spark.launcher.SparkSubmitOptionParser.parse(SparkSubmitOptionParser.java:178)
        at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.scala:97)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:113)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.fs.FSDataInputStream
        at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
        at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
        ... 5 more

解决方案:

spark-env.sh文件中添加:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

</br>
</br>

2.启动spark-shell时,报错

INFO cluster.YarnClientSchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@services07:34965/user/Executor#1736210263] with ID 1
INFO util.RackResolver: Resolved services07 to /default-rack
INFO storage.BlockManagerMasterActor: Registering block manager services07:51154 with 534.5 MB RAM

解决方案:

在spark的spark-env配置文件中配置下列配置项:

将export SPARK_WORKER_MEMORY, export SPARK_DRIVER_MEMORY, export SPARK_YARN_AM_MEMORY的值设置成小于534.5 MB

</br>
</br>

3.启动spark SQL时,报错:

  Caused by: org.datanucleus.store.rdbms.connectionpool.DatastoreDriverNotFoundException: The specified datastore driver ("com.mysql.jdbc.Driver ") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.

解决方案:

$SPARK_HOME/conf/spark-env.sh文件中配置:

export SPARK_CLASSPATH=$HIVE_HOME/lib/mysql-connector-java-5.1.6-bin.jar

</br>
</br>

4.启动spark SQL时,报错:

  java.sql.SQLException: Access denied for user 'services02 '@'services02' (using password: YES)

解决方案:

检查hive-site.xml的配置项, 有以下这个配置项

<property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>123456</value>
    <description>password to use against metastore database</description>
</property>

看该密码与与MySQL的登录密码是否一致


</br>
</br>

5.启动计算任务时报错:

报错信息为:

  org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout

解决方案:

  分配的core不够, 多分配几核的CPU

</br>
</br>

6.启动计算任务时报错:

不断重复出现

  status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1     
  status.SparkJobMonitor: 2017-01-04 11:53:54,564    Stage-0_0: 0(+1)/1     
  status.SparkJobMonitor: 2017-01-04 11:53:55,564    Stage-0_0: 0(+1)/1     
  status.SparkJobMonitor: 2017-01-04 11:53:56,564    Stage-0_0: 0(+1)/1             

解决方案:

    资源不够, 分配大点内存, 默认值为512MB.

</br>
</br>

7.启动Spark作为计算引擎时报错:

报错信息为:

java.io.IOException: Failed on local exception: java.nio.channels.ClosedByInterruptException; Host Details : local host is: "m1/192.168.179.201"; destination host is: "m1":9000; 
    at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:772)
    at org.apache.hadoop.ipc.Client.call(Client.java:1474)
Caused by: java.nio.channels.ClosedByInterruptException
    at java.nio.channels.spi.AbstractInterruptibleChannel.end(AbstractInterruptibleChannel.java:202)
    at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:681)
17/01/06 11:01:43 INFO retry.RetryInvocationHandler: Exception while invoking getFileInfo of class ClientNamenodeProtocolTranslatorPB over m2/192.168.179.202:9000 after 9 fail over attempts. Trying to fail over immediately.

解决方案:

出现该问题的原因有多种, 我所遇到的是使用Hive On Spark时报了此错误,解决方案是:
hive-site.xml文件下正确配置该项

<property>
    <name>spark.yarn.jar</name>
    <value>hdfs://ns1/Jar/spark-assembly-1.6.0-hadoop2.6.0.jar</value>
</property>

</br>
</br>

8.启动spark集群时报错,启动命令为:start-mastersh

报错信息:

Exception in thread "main" java.lang.NoClassDefFoundError: org/slf4j/Logger
        at java.lang.Class.getDeclaredMethods0(Native Method)
        at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
        at java.lang.Class.privateGetMethodRecursive(Class.java:3048)
        at java.lang.Class.getMethod0(Class.java:3018)
        at java.lang.Class.getMethod(Class.java:1784)
        at sun.launcher.LauncherHelper.validateMainClass(LauncherHelper.java:544)
        at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:526)
Caused by: java.lang.ClassNotFoundException: org.slf4j.Logger
        at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        ... 7 more

解决方案:

/home/centos/soft/hadoop/share/hadoop/common/lib目录下的slf4j-api-1.7.5.jar文件,slf4j-log4j12-1.7.5.jar文件和commons-logging-1.1.3.jar文件拷贝到/home/centos/soft/spark/lib目录下


</br>
</br>

9.启动spark集群时报错,启动命令为:start-mastersh

报错信息:

Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/conf/Configuration
        at java.lang.Class.getDeclaredMethods0(Native Method)
        at java.lang.Class.privateGetDeclaredMethods(Class.java:2570)
        at java.lang.Class.getMethod0(Class.java:2813)
        at java.lang.Class.getMethod(Class.java:1663)
        at sun.launcher.LauncherHelper.getMainMethod(LauncherHelper.java:494)
        at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:486)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.conf.Configuration
        at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
        at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
        ... 6 more

解决方案:

官网资料:
    https://spark.apache.org/docs/latest/hadoop-provided.html#apache-hadoop

编辑/home/centos/soft/spark/conf/spark-env.sh文件,配置下列配置项:

export SPARK_DIST_CLASSPATH=$(/home/centos/soft/hadoop/bin/hadoop classpath)

</br>
</br>

10.启动HPL/SQL存储过程时报错:

报错信息:

2017-01-10T15:20:18,491 ERROR [HiveServer2-Background-Pool: Thread-97] exec.TaskRunner: Error in executeTask
java.lang.OutOfMemoryError: PermGen space
        at java.lang.ClassLoader.defineClass1(Native Method)
        at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
2017-01-10T15:20:18,491 ERROR [HiveServer2-Background-Pool: Thread-97] ql.Driver: FAILED: Execution Error, return code -101 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. PermGen space
2017-01-10T15:20:18,491  INFO [HiveServer2-Background-Pool: Thread-97] ql.Driver: Completed executing command(queryId=centos_20170110152016_240c1b5e-3153-4179-80af-9688fa7674dd); Time taken: 2.113 seconds
2017-01-10T15:20:18,500 ERROR [HiveServer2-Background-Pool: Thread-97] operation.Operation: Error running hive query: 
org.apache.hive.service.cli.HiveSQLException: Error while processing statement: FAILED: Execution Error, return code -101 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. PermGen space
        at org.apache.hive.service.cli.operation.Operation.toSQLException(Operation.java:388)
        at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:244)
        at org.apache.hive.service.cli.operation.SQLOperation.access$800(SQLOperation.java:91)
Caused by: java.lang.OutOfMemoryError: PermGen space
        at java.lang.ClassLoader.defineClass1(Native Method)
        at java.lang.ClassLoader.defineClass(ClassLoader.java:800)

解决方案:

参考资料:
    http://blog.csdn.net/xiao_jun_0820/article/details/45038205

出现该问题是因为Spark默认使用全部资源, 而此时主机的内存已用, 应在Spark配置文件中限制内存的大小.
hive-site.xml文件下配置该项:

<property>
    <name>spark.driver.extraJavaOptions</name>
    <value>-XX:PermSize=128M -XX:MaxPermSize=512M</value>
</property>

或在spark-default.conf文件下配置:

spark.driver.extraJavaOptions             -XX:PermSize=128M -XX:MaxPermSize=256M

</br>
</br>
</br>
</br>

三.Spark常见问题汇总

1.报错信息:

Operation category READ is not supported in state standbyorg.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyException): 
Operation category READ is not supported in state standby

解决方案:

查看执行Spark计算的是否处于standby状态, 用浏览器访问该主机:http://m1:50070, 如果处于standby状态, 则不可在处于StandBy机器运行spark计算,应切执行Spark计算的主机从Standby状态切换到Active状态


</br>
</br>

2.问题出现情景:

Spakr集群的所有运行数据在Master重启是都会丢失

解决方案:

配置spark.deploy.recoveryMode选项为ZOOKEEPER


</br>
</br>

3.报错信息:

由于Spark在计算的时候会将中间结果存储到/tmp目录,而目前linux又都支持tmpfs,其实就是将/tmp目录挂载到内存当中, 那么这里就存在一个问题,中间结果过多导致/tmp目录写满而出现如下错误

No Space Left on the device(Shuffle临时文件过多)

解决办法:

修改配置文件spark-env.sh,把临时文件引入到一个自定义的目录中去, 即:

export SPARK_LOCAL_DIRS=/home/utoken/datadir/spark/tmp

</br>
</br>

4.报错信息:

java.lang.OutOfMemory, unable to create new native thread
Caused by: java.lang.OutOfMemoryError: unable to create new native thread
        at java.lang.Thread.start0(Native Method)
        at java.lang.Thread.start(Thread.java:640)

解决方案:

上面这段错误提示的本质是Linux操作系统无法创建更多进程,导致出错,并不是系统的内存不足。因此要解决这个问题需要修改Linux允许创建更多的进程,就需要修改Linux最大进程数。
(1)修改Linux最大进程数

ulimit -a

(2)临时修改允许打开的最大进程数

ulimit -u 65535

(3)临时修改允许打开的文件句柄

ulimit -n 65535

(4)永久修改Linux最大进程数量

sudo vi /etc/security/limits.d/90-nproc.conf
*          soft    nproc     60000
root       soft    nproc     unlimited

永久修改用户打开文件的最大句柄数,该值默认1024,一般都会不够,常见错误就是not open file
解决办法:

sudo vi /etc/security/limits.conf
bdata  soft    nofile  65536
bdata  hard    nofile  65536

</br>
</br>

5.问题出现情景:

Worker节点中的work目录占用许多磁盘空间, 这些是Driver上传到worker的文件, 会占用许多磁盘空间.

解决方案:

需要定时做手工清理. 目录地址:/home/centos/soft/spark/work


</br>
</br>

6.问题出现情景:

spark-shell提交Spark Application如何解决依赖库

解决方案:

利用--driver-class-path选项来指定所依赖的jar文件,注意的是--driver-class-path后如果需要跟着多个jar文件的话,jar文件之间使用冒号:来分割。


</br>
</br>

7.Spark在发布应用的时候,出现连接不上master

报错信息如下:

INFO AppClient$ClientEndpoint: Connecting to master spark://s1:7077...
WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkMaster@s1:7077] has failed, address is now gated for [5000] ms. Reason: [Disassociated]

解决方案:

检查所有机器时间是否一致.hosts是否都配置了映射.客户端和服务器端的Scala版本是否一致.Scala版本是否和Spark兼容


</br>
</br>

8.开发spark应用程序(和Flume-NG结合时)发布应用时可能会报错

报错信息如下:

ERROR ReceiverSupervisorImpl: Stopped receiver with error: org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800
ERROR Executor: Exception in task 0.0 in stage 2.0 (TID 70)
                org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800
                at org.jboss.netty.bootstrap.ServerBootstrap.bind(ServerBootstrap.java:272)
Caused by: java.net.BindException: Cannot assign requested address

解决方案:

参考资料:
  http://www.tuicool.com/articles/Yfi2eyR

由于spark通过Master发布的时候,会自动选取发送到某一台的worker节点上,所以这里绑定端口的时候,需要选择相应的worker服务器,但是由于我们无法事先了解到,spark发布到哪一台服务器的,所以这里启动报错,是因为在192.168.10.156:18800的机器上面没有启动Driver程序,而是发布到了其他服务器去启动了,所以无法监听到该机器出现问题,所以我们需要设置spark分发包时,发布到所有worker节点机器,或者发布后,我们去寻找发布到了哪一台机器,重新修改绑定IP,重新发布,有一定几率发布成功。


</br>
</br>

9.使用Hive on Spark时报错:

ERROR XSDB6: Another instance of Derby may have already booted the database /home/bdata/data/metastore_db.

解决方案:

在使用Hive on Spark模式操作hive里面的数据时,报以上错误,原因是因为HIVE采用了derby这个内嵌数据库作为数据库,它不支持多用户同时访问,解决办法就是把derby数据库换成mysql数据库即可


</br>
</br>

10.找不到hdfs集群名字dfscluster

报错信息:

  java.lang.IllegalArgumentException: java.net.UnknownHostException: dfscluster

解决办法:

$HADOOP_HOME/etc/hadoop/hdfs-site.xml文件拷贝到Spark集群的所有主机的$SPARK_HOME/conf目录下,然后重启Spark集群

cd /home/centos/soft/spark/conf/
for i in {201,202,203}; 
do scp hdfs-site.xml 192.168.179.$i:/home/centos/soft/spark/conf/; 
done

</br>
</br>

11.在执行yarn集群或者客户端时,报错:

执行指令:

sh $SPARK_HOME/bin/spark-sql --master yarn-client

报如下错误:

Exception in thread "main" java.lang.Exception: When running with master 'yarn-client' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.

解决办法:

根据提示,配置HADOOP_CONF_DIR or YARN_CONF_DIR的环境变量即可, 在spark-env.sh文件中配置以下几项:

export HADOOP_HOME=/u01/hadoop-2.6.1
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
PATH=$PATH:$HIVE_HOME/bin:$HADOOP_HOME/bin

</br>
</br>

12.提交spark计算任务时,报错:

报错信息如下:

Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in
[org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 0 on 192.168.10.38: remote Rpc client disassociated
[org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 1 on 192.168.10.38: remote Rpc client disassociated
[org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 2 on 192.168.10.38: remote Rpc client disassociated
[org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 3 on 192.168.10.38: remote Rpc client disassociated
[org.apache.spark.scheduler.TaskSetManager]-[ERROR] Task 3 in stage 0.0 failed 4 times; aborting job
Exception in thread "main" org.apache.spark.SparkException : Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in stage 0.0 (TID 14, 192.168.10.38): ExecutorLostFailure (executor 3 lost)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)

解决方案:

这里遇到的问题主要是因为数据源数据量过大,而机器的内存无法满足需求,导致长时间执行超时断开的情况,数据无法有效进行交互计算,因此有必要增加内存


</br>
</br>

13.启动Spark计算任务:

长时间等待无反应,并且看到服务器上面的web界面有内存和核心数,但是没有分配,报错信息如下:

status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1
status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1
status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1
status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1
status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1
status.SparkJobMonitor: 2017-01-04 11:53:51,564    Stage-0_0: 0(+1)/1

日志信息显示:

WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

解决方案:

出现上面的问题主要原因是因为我们通过参数spark.executor.memory设置的内存过大,已经超过了实际机器拥有的内存,故无法执行,需要等待机器拥有足够的内存后,才能执行任务,可以减少任务执行内存,设置小一些即可


</br>
</br>

14.内存不足或数据倾斜导致Executor Lost(spark-submit提交)

报错信息如下:

TaskSetManager: Lost task 1.0 in stage 6.0 (TID 100, 192.168.10.37): java.lang.OutOfMemoryError: Java heap space
INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.10.37:57139 (size: 42.0 KB, free: 24.2 MB)
INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.10.38:53816 (size: 42.0 KB, free: 24.2 MB)
INFO TaskSetManager: Starting task 3.0 in stage 6.0 (TID 102, 192.168.10.37, ANY, 2152 bytes)
WARN TaskSetManager: Lost task 1.0 in stage 6.0 (TID 100, 192.168.10.37): java.lang.OutOfMemoryError: Java heap space
            at java.io.BufferedOutputStream.<init>(BufferedOutputStream.java:76)
            at java.io.BufferedOutputStream.<init>(BufferedOutputStream.java:59)
            at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$2.<init>(UnsafeRowSerializer.scala:55)
ERROR TaskSchedulerImpl: Lost executor 6 on 192.168.10.37: remote Rpc client disassociated
INFO TaskSetManager: Re-queueing tasks for 6 from TaskSet 6.0
WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkExecutor@192.168.10.37:42250] has failed, address is now gated for [5000] ms. Reason: [Disassociated]
WARN TaskSetManager: Lost task 3.0 in stage 6.0 (TID 102, 192.168.10.37): ExecutorLostFailure (executor 6 lost)
INFO DAGScheduler: Executor lost: 6 (epoch 8)
INFO BlockManagerMasterEndpoint: Trying to remove executor 6 from BlockManagerMaster.
INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(6, 192.168.10.37, 57139)
INFO BlockManagerMaster: Removed 6 successfully in removeExecutor
INFO AppClient$ClientEndpoint: Executor updated: app-20160115142128-0001/6 is now EXITED (Command exited with code 52)
INFO SparkDeploySchedulerBackend: Executor app-20160115142128-0001/6 removed: Command exited with code 52
INFO SparkDeploySchedulerBackend: Asked to remove non-existent executor 6
          org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 6.0 failed 4 times, most recent failure: Lost task 0.3 in stage 6.0 (TID 142, 192.168.10.36): ExecutorLostFailure (executor 4 lost)
WARN TaskSetManager: Lost task 4.1 in stage 6.0 (TID 137, 192.168.10.38): java.lang.OutOfMemoryError: GC overhead limit exceeded

解决办法:

由于我们在执行Spark任务是,读取所需要的原数据,数据量太大,导致在Worker上面分配的任务执行数据时所需要的内存不够,直接导致内存溢出了,所以我们有必要增加Worker上面的内存来满足程序运行需要。
Spark Streaming或者其他spark任务中,会遇到在Spark中常见的问题,典型如Executor Lost相关的问题(shuffle fetch失败,Task失败重试等)。这就意味着发生了内存不足或者数据倾斜的问题。这个目前需要考虑如下几个点以获得解决方案:

A.相同资源下,增加partition数可以减少内存问题。 原因如下:通过增加partition数,每个task要处理的数据少了,同一时间内,所有正在运行的task要处理的数量少了很多,所有Executor占用的内存也变小了。这可以缓解数据倾斜以及内存不足的压力。
B.关注shuffle read阶段的并行数。例如reduce, group 之类的函数,其实他们都有第二个参数,并行度(partition数),只是大家一般都不设置。不过出了问题再设置一下,也不错。
C.给一个Executor核数设置的太多,也就意味着同一时刻,在该Executor的内存压力会更大,GC也会更频繁。我一般会控制在3个左右。然后通过提高Executor数量来保持资源的总量不变。


</br>
</br>

16. Spark Streaming 和kafka整合

报错信息如下:

  OffsetOutOfRangeException

解决方案:

如果和kafka消息中间件结合使用,请检查消息体是否大于默认设置1m,如果大于,则需要设置fetch.message.max.bytes=1m, 这里需要把值设置大些


</br>
</br>

17.报错信息:

java.io.IOException : Could not locate executable null\bin\winutils.exe in the Hadoop binaries.(spark sql on hive 任务引发HiveContext NullPointerException)

解决办法:

在开发hive和Spark整合的时候,如果是Windows系统,并且没有配置HADOOP_HOME的环境变量,那么可能找不到winutils.exe这个工具,由于使用hive时,对该命令有依赖,所以不要忽视该错误,否则将无法创建HiveContext,一直报Exception in thread "main" java.lang.RuntimeException: java.lang.NullPointerException
因此,解决该办法有两个方式

方案A:

把任务打包成jar,上传到服务器上面,服务器是配置过HADOOP_HOME环境变量的,并且不需要依赖winutils,所以只需要通过spark-submit方式提交即可,如:

  spark-submit --class com.pride.hive.HiveOnSparkTest --master spark://bdata4:7077 spark-simple-1.0.jar

方案B:

解决winutils.exe命令不可用问题,配置Windows上面HADOOP_HOME的环境变量,或者在程序最开始的地方设置HADOOP_HOME的属性配置,这里需要注意,由于最新版本已经没有winutils这些exe命令了,我们需要在其他地方下载该命令放入HADOOP的bin目录下,当然也可以直接配置下载项目的环境变量,变量名一定要是HADOOP_HOME才行

下载地址: (记得翻墙哦)
    https://github.com/srccodes/hadoop-common-2.2.0-bin/archive/master.zip

任何项目都生效,需要配置Windows的环境变量,如果只在程序中生效可在程序中配置即可,如:

//用于解决Windows下找不到winutils.exe命令
System. setProperty("hadoop.home.dir", "E:\\Software\\hadoop-common-2.2.0-bin" );

</br>
</br>

19.报错信息:

Exception in thread "main" org.apache.hadoop.security.AccessControlException : Permission denied: user=Administrator, access=WRITE, inode="/data":bdata:supergroup:drwxr-xr-x

解决办法

1.在系统的环境变量或JVM变量里面添加HADOOP_USER_NAME,如程序中添加:
System.setProperty("HADOOP_USER_NAME", "bdata");, 这里的值就是以后会运行HADOOP上的Linux的用户名,如果是eclipse,则修改完重启eclipse,不然可能不生效
2.修改有问题的目录权限

hadoop fs -chmod 755 /tmp

并hive-site.xml文件中增加以下配置

<property>
    <name>hive.scratch.dir.permission</name>
    <value>755</value>
</property>

</br>
</br>

20.运行Spark-SQL报错:

  org.apache.spark.sql.AnalysisException: unresolved operator 'Project

解决办法:

在Spark-sql和hive结合时或者单独Spark-sql,运行某些sql语句时,偶尔出现上面错误,那么我们可以检查一下sql的问题,这里遇到的问题是嵌套语句太多,导致spark无法解析,所以需要修改sql或者改用其他方式处理;特别注意该语句可能在hive里面没有错误,spark才会出现的一种错误。


</br>
</br>

21.报错信息如下:

org.apache.spark.SparkException: Only one SparkContext may be running in this JVM (see SPARK-2243). To ignore this error, set spark.driver.allowMultipleContexts = true.

解决方案:

使用Use this constructor JavaStreamingContext(sparkContext: JavaSparkContext, batchDuration: Duration) 替代 new JavaStreamingContext(sparkConf, Durations.seconds(5))


</br>
</br>

22.报错信息如下:

java.lang.IllegalArgumentException: requirement failed: No output operations registered, so nothing to execute

解决方案:

tranformation最后一步产生的那个RDD必须有相应Action操作,例如massages.print()


</br>
</br>

23.报错信息如下:

ERROR ApplicationMaster: SparkContext did not initialize after waiting for 100000 ms. Please check earlier log output for errors. Failing the application

解决方案:

资源不能分配过大,或者没有把.setMaster("local[*]")去掉


</br>
</br>

24.报错信息如下:

java.util.regex.PatternSyntaxException: Dangling meta character '?' near index 0

解决方案:

元字符记得转义


</br>
</br>

25.报错信息如下:

Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream

解决方案:

编译spark用了hadoop-provided参数,导致缺少hadoop相关包


</br>
</br>

26.报错信息如下:

org.apache.spark.SparkException: Task failed while writing rows Caused by: org.elasticsearch.hadoop.rest.EsHadoopInvalidRequest: null

解决方案:

ES负载过高,修复ES


</br>
</br>

27.报错信息如下:

org.apache.spark.SparkException: Task failed while writing rows scala.MatchError: Buffer(10.113.80.29, None) (of class scala.collection.convert.Wrappers$JListWrapper)

解决方案:

ES数据在sparksql类型转化时不兼容,可通过EsSpark.esJsonRDD以字符串形式取ES数据,再把rdd转换成dataframe


</br>
</br>

28.报错信息如下:

SparkListenerBus has already stopped! Dropping event SparkListenerStageCompleted

解决方案:

集群资源不够,确保真实剩余内存大于spark job申请的内存


</br>
</br>

29.报错信息如下:

ExecutorLostFailure (executor 3 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 61.0 GB of 61 GB physical memory used

解决方案:

配置项spark.storage.memoryFraction默认值为0.6, 应加大spark.storage.memoryFraction的系数


</br>
</br>

30.问题如下:

如何定位spark的数据倾斜 

解决方案:

Spark Web UI看一下当前stage各个task分配的数据量以及执行时间,根据stage划分原理定位代码中shuffle类算子


</br>
</br>

31.报错信息如下:

如何解决spark数据倾斜 

解决方案:

  1. 过滤少数导致倾斜的key(仅限于抛弃的Key对作业影响很小)
  2. 提高shuffle操作并行度(提升效果有限)
  3. 两阶段聚合(局部聚合+全局聚合),先对相同的key加前缀变成多个key,局部shuffle后再去掉前缀,再次进行全局shuffle(仅适用于聚合类的shuffle操作,效果明显,对于join类的shuffle操作无效),
  4. reduce join转为map join,将小表进行广播,对大表map操作,遍历小表数据(仅适用于大小表或RDD情况)
  5. 使用随机前缀和扩容RDD进行join,对其中一个RDD每条数据打上n以内的随机前缀,用flatMap算子对另一个RDD进行n倍扩容并扩容后的每条数据依次打上0~n的前缀,最后将两个改造key后的RDD进行join(能大幅缓解join类型数据倾斜,需要消耗巨额内存)

</br>
</br>

32.报错信息如下:

org.apache.spark.SparkException: Failed to get broadcast_790_piece0 of broadcast_790

解决方案:

删除spark-defaults.conf文件中spark.cleaner.ttl的配置


</br>
</br>

33.报错信息如下:

  MapperParsingException[Malformed content, must start with an object

解决方案:

采用接口JavaEsSpark.saveJsonToEs,因为saveToEs只能处理对象不能处理字符串


</br>
</br>

34.报错信息如下:

  java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds

解决方案:

  1. 确保所有节点之间能够免密码登录
  2. 确保所在的主机满足spark-env.sh中分配的CPU个数,若spark-env.sh中分配的CPU个数为一个,而masterworker在同一部主机上,则该主机需最少分配2个CPU

</br>
</br>

35.报错信息如下:

Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.

解决方案:

出现此类问题有很多种, 当时遇到这问题的因为是在spark未改动的情况下, 更换了Hive的版本导致版本不对出现了此问题, 解决此问题的方法是:

  1. 再次运行spark计算, 查看日志中Hive的版本, 检查当前Hive是否与Spark日志中的Hive版本一致
  2. 若Hive版本不一致, 则删除现有的Hive, 并删除MySQL中Hive的元数据(若使用MySQL元数据库), HDFS上hive, tmp, user目录下的数据
  3. 安装与Spark日志中版本匹配的Hive

</br>
</br>
</br>
</br>



作者:咸鱼翻身记
链接:https://www.jianshu.com/p/a0c38dc46b89
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

浏览417 评论0
返回
目录
返回
首页
HBase学习之路 (二)HBase集群安装 Flume的监控(Monitor)