Flume的监控(Monitor)
使用Flume实时收集日志的过程中,尽管有事务机制保证数据不丢失,但仍然需要时刻关注Source、Channel、Sink之间的消息传输是否正常,比如,SouceàChannel传输了多少消息,ChannelàSink又传输了多少,两处的消息量是否偏差过大等等。
Flume为我们提供了Monitor的机制:http://flume.apache.org/FlumeUserGuide.html#monitoring 通过Reporting的方式,把过程中的Counter都打印出来。一共有4种Reporting方式,JMX Reporting、Ganglia Reporting、JSON Reporting、Custom Reporting, 这里以最简单的JSON Reporting为例。
在启动Flume Agent时候,增加两个参数:
flume-ng agent -n agent_lxw1234 –conf . -f agent_lxw1234_file_2_kafka.properties -Dflume.monitoring.type=http -Dflume.monitoring.port=34545
flume.monitoring.type=http 指定了Reporting的方式为http,flume.monitoring.port 指定了http服务的端口号。
启动后,会在Flume Agent所在的机器上启动http服务,http://<hostname>:34545/metrics 打开该地址后,返回一段JSON:
- {
- "SINK.sink_lxw1234":{
- "ConnectionCreatedCount":"0",
- "BatchCompleteCount":"0",
- "BatchEmptyCount":"72",
- "EventDrainAttemptCount":"0",
- "StartTime":"1518400034824",
- "BatchUnderflowCount":"43",
- "ConnectionFailedCount":"0",
- "ConnectionClosedCount":"0",
- "Type":"SINK",
- "RollbackCount":"0",
- "EventDrainSuccessCount":"244",
- "KafkaEventSendTimer":"531",
- "StopTime":"0"
- },
- "CHANNEL.file_channel_lxw1234":{
- "Unhealthy":"0",
- "ChannelSize":"0",
- "EventTakeAttemptCount":"359",
- "StartTime":"1518400034141",
- "Open":"true",
- "CheckpointWriteErrorCount":"0",
- "ChannelCapacity":"10000",
- "ChannelFillPercentage":"0.0",
- "EventTakeErrorCount":"0",
- "Type":"CHANNEL",
- "EventTakeSuccessCount":"244",
- "Closed":"0",
- "CheckpointBackupWriteErrorCount":"0",
- "EventPutAttemptCount":"244",
- "EventPutSuccessCount":"244",
- "EventPutErrorCount":"0",
- "StopTime":"0"
- },
- "SOURCE.source_lxw1234":{
- "EventReceivedCount":"244",
- "AppendBatchAcceptedCount":"45",
- "Type":"SOURCE",
- "AppendReceivedCount":"0",
- "EventAcceptedCount":"244",
- "StartTime":"1518400034767",
- "AppendAcceptedCount":"0",
- "OpenConnectionCount":"0",
- "AppendBatchReceivedCount":"45",
- "StopTime":"0"
- }
- }
我的例子中,Source为TAILDIR,Channel为FileChannel,Sink为Kafka Sink。三个JSON对象分别打印出三个组件的Counter信息。
比如:SOURCE中”EventReceivedCount”:”244″ 表示SOURCE从文件中读取到244条消息;
CHANNEL中”EventPutSuccessCount”:”244″ 表示成功存放244条消息;
SINK中”EventDrainSuccessCount”:”244″ 表示成功向Kafka发送了244条消息。
目录 返回
首页